Integration methods

- Integration by substitution (change of variable, 積分換變數).
 - Change of variable using one-to-one transform.
 - Change of variable when the transform is not one-to-one.
- Change of variable using one-to-one transform. Suppose that we are interested in calculating $\int_a^b T(u)du$ (assuming the functions T is continuous) and would like to do a change of variable by setting x=g(u), where g^{-1} exists. Then we have

$$\int_{a}^{b} T(u)du = \int_{g(a)}^{g(b)} \frac{T(u)}{\frac{dx}{du}} dx$$

$$= \int_{g(a)}^{g(b)} \frac{T(u)}{g'(u)} \Big|_{u=g^{-1}(x)} dx \qquad (1)$$

$$\stackrel{T_{1}(u)=T(u)/g'(u)}{=} \int_{g(a)}^{g(b)} T_{1}(g^{-1}(x)) dx.$$

• Change of variable when the transform is not one-to-one. Suppose that in (1), $\frac{T(u)}{\frac{dx}{dx}}$ can be expressed as a function of x, say f(x), then

$$\int_{a}^{b} T(u)du = \int_{g(a)}^{g(b)} \frac{T(u)}{\frac{dx}{du}} dx = \int_{g(a)}^{g(b)} f(x)dx.$$
 (2)

In such case, (2) holds even when g is not one-to-one and (2) can be re-written as

$$\int_{a}^{b} f(g(u))g'(u)du = \int_{g(a)}^{g(b)} f(x)dx$$
 (3)

since T(u)/g'(u) = f(x) = f(g(u)).

• Example 1. Find $\int_0^{\pi} \sin^2(x) \cos(x) dx$. Sol.

$$\int_0^{\pi} \sin^2(x) \cos(x) dx \stackrel{u = \sin(x)}{=} \int_{\sin(0)}^{\sin(\pi)} \frac{\sin^2(x) \cos(x)}{\frac{du}{dx}} du$$

$$= \int_{\sin(0)}^{\sin(\pi)} \frac{\sin^2(x) \cos(x)}{\cos(x)} du = \int_0^0 u^2 du = 0.$$

Example 2. Find $\int_0^{2\pi/3} \sin(3x) dx$.

$$(u = 3x)$$

Example 3. Find $\int_0^1 (1+3x)^5 dx$.

$$(u = 1 + 3x)$$

• The change of variable formula in (3) can be applied when computing $\int_c^d f(x)dx$ by setting x = g(u). From (3),

$$\int_{c}^{d} f(x)dx = \int_{a}^{b} f(g(u)) \underbrace{g'(u)}_{dx/du} du,$$

where a and b are constants such that g(a) = c and g(b) = d.

• Example 4. Find $\int_0^2 \sqrt{4-x^2} dx$. Sol. Set $x=2\cos(\theta)$ and choose $a=\pi/2$, b=0 so that $2\cos(a)=0$ and $2\cos(b)=2$ (other choices for (a,b) are also possible). Then

$$\begin{split} \int_0^2 \sqrt{4 - x^2} dx &= \int_{\pi/2}^0 \sqrt{4 - (2\cos(\theta))^2} \frac{d2\cos(\theta)}{d\theta} d\theta \\ &= -\int_0^{\pi/2} |2\sin(\theta)| (-2\sin(\theta)) d\theta \\ &= \int_0^{\pi/2} 4\sin^2(\theta) d\theta \\ &= \int_0^{\pi/2} 2(1 - \cos(2\theta)) d\theta = (2\theta - \sin(2\theta))|_0^{\pi/2} = \pi. \end{split}$$

- Notation. $\int_a^b f(x)dg(x)$ means $\int_a^b f(x)\frac{dg(x)}{dx}dx$ and $\int f(x)dg(x)$ means $ds \int f(x)\frac{dg(x)}{dx}dx$.
- Integration by parts (分部積分).

$$\int_a^b u(x)dv(x) = u(x)v(x)|_a^b - \int_a^b v(x)du(x).$$

For indefinite integrals:

$$\int u(x)dv(x) = u(x)v(x) - \int v(x)du(x).$$

– Recall: we use the indefinite integral $\int f(x)dx$ to denote an antiderivative of f. Example 5. Find $\int_0^1 x e^x dx$, $\int_0^1 x^2 e^x dx$ and $\int x e^x dx$.

Sol.

$$\int xe^x dx = \int xde^x$$

$$= xe^x - \int e^x dx = xe^x - e^x.$$
 (4)

$$\int_0^1 x e^x dx \stackrel{(4)}{=} (x e^x - e^x)|_{x=0}^1 = e - e - (0 - 1) = 1.$$
 (5)

$$\int_0^1 x^2 e^x dx = \int_0^1 x^2 de^x$$
$$= x^2 e^x \Big|_0^1 - \int_0^1 e^x dx^2 = e - \int_0^1 e^x 2x dx \stackrel{(5)}{=} e - 2.$$

Example 6. Show that $\int (\ln x)^n dx = x(\ln x)^n - n \int (\ln x)^{n-1} dx$ for $n \ge 1$.

Sol. Take $u(x) = (\ln x)^n$ and v(x) = x and then apply integration by parts.

Example 7. Show that

$$\int \sec^k(x)dx = \frac{1}{k-1} \left(\tan(x) \sec^{k-2}(x) + (k-2) \int \sec^{k-2}(x)dx \right)$$
for $k \ge 2$.

Sol. Write $\int \sec^k(x) dx = \int \sec^{k-2}(x) d\tan(x)$ and then apply integration by parts.

- Note. When solving the problems in Examples 6 and 7, we use the following properties for indefinite integral.
 - (i) For a constant a, $\int af(x)dx = a \int f(x)dx$.

(ii)
$$\int (f(x) + g(x))dx = \int f(x)dx + \int g(x)dx; \int (f(x) - g(x))dx = \int f(x)dx - \int g(x)dx.$$

(iii) Suppose that $\int f(x)dx = a \int f(x)dx + g(x)$ for some constant $a \neq 1$. Then $\int f(x)dx = \frac{1}{1-a}g(x).$

Example 8. Find $\int_0^{\pi/4} \tan^{-1}(x) dx$ using integration by parts.

- Integration of $\sin^m(x)\cos^n(x)$.
 - If m is odd, set $u = \cos(x)$ (substitution). If n is odd, set $u = \sin(x)$.
 - If m and n are even, use $\cos(2x) = 2\cos^2(x) 1 = 1 2\sin^2(x)$.

Example 9. Find $\int \sin^3(x) \cos^n(x) dx$.

Example 10. Find $\int \sin^2(x) \cos^2(x) dx$.

- Integration of $\tan^m(x) \sec^n(x)$.
 - If m is odd, set $u = \sec(x)$. If n is even, set $u = \tan(x)$.
 - If m is even and n is odd, first express $\tan^2(x)$ using $\sec^2(x)$, and then use the formula in (6) and the fact that

$$\int \sec(x)dx = \ln|\tan(x) + \sec(x)|$$

to find $\int \sec^k(x) dx$.

- Integrals involving $\sqrt{a^2-x^2}$, $\sqrt{a^2+x^2}$ and $\sqrt{x^2-a^2}$.
 - Approach: set $x = a\cos(\theta)$, $a\tan(\theta)$ and $a\sec(\theta)$ respectively.

Example 11. Find $\int_0^1 \sqrt{1-x^2} dx$.

Example 12. Find $\int_0^1 \sqrt{1+x^2} dx$.

Example 13. Find $\int_2^3 \sqrt{x^2 - 1} dx$.