L'Hôpital's rule

• Suppose that a is a real number and Δ can be a, a^+, a^-, ∞ or $-\infty$. Recall that

$$N(\Delta, D) = \begin{cases} (a - D, a) \cup (a, a + D) & \text{if } \Delta = a, D > 0; \\ (a - D, a) & \text{if } \Delta = a^{-}, D > 0; \\ (a, a + D) & \text{if } \Delta = a^{+}, D > 0; \\ (D, \infty) & \text{if } \Delta = \infty; \\ (-\infty, D) & \text{if } \Delta = -\infty. \end{cases}$$

- Suppose that a is a real number and Δ can be a, a^+, a^-, ∞ or $-\infty$.
 - We say that $\lim_{x\to\Delta} f(x)/g(x)$ is of the 0/0 type if

$$\lim_{x \to \Delta} f(x) = 0 = \lim_{x \to \Delta} g(x).$$

- We say that $\lim_{x\to\Delta} f(x)/g(x)$ is of the ∞/∞ type if

$$\lim_{x \to \Delta} f(x) = \infty \text{ and } \lim_{x \to \Delta} g(x) = \infty, \tag{1}$$

or (1) holds with one (or two) of the $\infty(s)$ replaced by $-\infty(s)$.

• L'Hôpital's rule (羅比違法則). Suppose that $\lim_{x\to\Delta} f(x)/g(x)$ is of the 0/0 type or the ∞/∞ type, and

$$\lim_{x \to \Delta} \frac{f'(x)}{g'(x)} = L,$$
(2)

where L can be a real number, ∞ or $-\infty$. Then

$$\lim_{x \to \Delta} \frac{f(x)}{g(x)} = \lim_{x \to \Delta} \frac{f'(x)}{g'(x)} = L.$$

By writing down (2), it is assumed that on some $N(\Delta, D)$, f and g are differentiable and $g' \neq 0$.

- L'Hôpital's rule for the 0/0 case with x → Δ with Δ = a, a⁺ or a⁻ can be proved using a general version of MVT.
 - Generalized MVT. Suppose that f and g are continuous on [a, b]and differentiable on (a, b). Suppose that $g'(x) \neq 0$ for $x \in (a, b)$. Then there exists $c \in (a, b)$ such that

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$

- Example 1. Find $\lim_{x\to 0} (1 \cos(x))/x$. (Answer: 0)
- Example 2. Find $\lim_{x\to 0} \sin(x)/x$. (Answer: 1)
- Example 3. Find $\lim_{x\to 0} (\sin(x)/x 1)/x$. (Answer: 0)
- Example 4. Find $\lim_{x\to\infty} e^x/x$. (Answer: ∞) Note: $\lim_{x\to\infty} e^x = \infty$ since for every $M_1 > 0, x > \ln(M_1) \Rightarrow e^x > M_1$.
- Example 5. Find $\lim_{x\to 0^+} x^x$. (Answer: 1)
- Example 6. Find $\lim_{x\to\infty} (1+1/x)^x$. (Answer: e)
- Example 7. Find $\lim_{x\to\infty} (x + \sin(x))/(x + \cos(x))$. (Answer: 1)
- Proof of l'Hôpital's rule for the ∞/∞ case assuming $L = \lim_{x \to \Delta} \frac{f'(x)}{g'(x)}$ is a real number.

Note that

$$\frac{f(x)}{g(x)} - \frac{f(x) - f(b)}{g(x) - g(b)} = \frac{-f(x)g(b) + f(b)g(x)}{g(x)(g(x) - g(b))} \\
= \frac{f(b)(g(x) - g(b)) - g(b)(f(x) - f(b))}{g(x)(g(x) - g(b))} \\
= \frac{f(b)}{g(x)} - \frac{g(b)(f(x) - f(b))}{g(x)(g(x) - g(b))}.$$

Since $\lim_{x\to\Delta} \frac{f'(x)}{g'(x)} = L$, for $\varepsilon > 0$, there exists some D_1 such that

$$x \in N(\Delta, D_1) \Rightarrow \left| \frac{f'(x)}{g'(x)} - L \right| < \min\left(1, \frac{\varepsilon}{2}\right).$$

For $b \in N(\Delta, D_1)$, since $\lim_{x \to \Delta} f(x) = \infty$ and $\lim_{x \to \Delta} g(x) = \infty$, we have

$$\lim_{x \to \Delta} \left| \frac{f(b)}{g(x)} \right| + \left| \frac{g(b)}{g(x)} (L+1) \right| = 0, \tag{3}$$

so there exists D_2 such that

$$x \in N(\Delta, D_2) \Rightarrow \left| \frac{f(b)}{g(x)} \right| + \left| \frac{g(b)}{g(x)} (L+1) \right| < \frac{\varepsilon}{2}.$$

Choose D_3 such that $N(\Delta, D_3) \subset N(\Delta, D_1) \cap N(\Delta, D_2)$, then for $x \in N(\Delta, D_3)$, f(x) = f(b) = f'(c)

$$\frac{f(x) - f(b)}{g(x) - g(b)} = \frac{f'(c)}{g'(c)}$$

for some $c \in N(\Delta, D_1)$ and

$$\begin{aligned} \left| \frac{f(x)}{g(x)} - L \right| &\leq \left| \frac{f(x)}{g(x)} - \frac{f(x) - f(b)}{g(x) - g(b)} \right| + \left| \frac{f(x) - f(b)}{g(x) - g(b)} - L \right| \\ &= \left| \frac{f(b)}{g(x)} - \frac{g(b)(f(x) - f(b))}{g(x)(g(x) - g(b))} \right| + \left| \frac{f'(c)}{g'(c)} - L \right| \\ &< \left| \frac{f(b)}{g(x)} \right| + \left| \frac{g(b)}{g(x)} \right| (L+1) + \frac{\varepsilon}{2} \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{aligned}$$

Therefore, $\lim_{x\to\Delta} f(x)/g(x) = L$.

- Remarks on the proof of l'Hôpital's rule.
 - For the 0/0 case with finite L, we can replace (3) by

$$\lim_{b \to \Delta} \left| \frac{f(b)}{g(x)} \right| + \left| \frac{g(b)}{g(x)} (L+1) \right| = 0.$$

– For the case where $L = \infty$, we can use

$$\frac{f(x)}{g(x)} = \frac{f(b)}{f(x)} + \left(1 - \frac{g(b)}{g(x)}\right) \left(\frac{f(x) - f(b)}{g(x) - g(b)}\right).$$

Since f(b)/f(x) and g(b)/g(x) can be made small, f(x)/g(x) can be made large.

- The case where $L = -\infty$ can be established by considering $\lim_{x \to \Delta} -\frac{f(x)}{g(x)}$.