Sketching function graphs

- Basic features to be included in the graph of a function f:
 - Rising/falling and critical points
 - Concavity (凹口方向) and inflection points (反曲點)
- Critical number/point. Suppose that f(c) is defined. If f'(c) = 0 or f is not differentiable at c, then c is called a critical number and the point (c, f(c)) is called a critical point (on the graph of f).
- The graph of f is concave up $(\ \Box \ \Box \ \Box \ \bot)$ on an open interval I means that for every $[a, b] \subset I$, the graph of f is below the line passing (a, f(a)) and (b, f(b)) on (a, b). That is, for every $[a, b] \subset I$,

$$f(x) < f(a) + \left(\frac{f(b) - f(a)}{b - a}\right)(x - a) \text{ for } x \in (a, b).$$
 (1)

- The graph of f is concave down (凹口向下) on an open interval I means that for every $[a, b] \subset I$, the graph of f is above the line passing (a, f(a)) and (b, f(b)) on (a, b).
- Fact 1. Suppose that f'' > 0 on an open interval I and $[a, b] \subset I$. Then (1) holds.

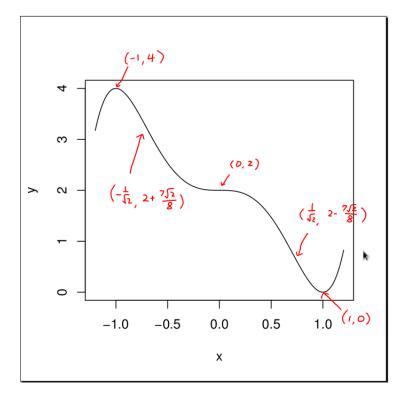
The proof of Fact 1 is given at the end of this handout.

- Concavity. Suppose that f'' > 0 on an interval I, then f is concave up on I. If f'' < 0 on I, then f is concave down on I.
- Inflection point. Suppose that f is continuous at c. If there exists $\delta > 0$ such that
 - (i) the graph of f is concave up on $(c, c + \delta)$ and concave down on $(c \delta, c)$, or
 - (ii) the graph of f is concave down on $(c, c + \delta)$ and concave up on $(c \delta, c)$,

then the point (c, f(c)) is called an inflection point (on the graph of f).

• Example 1. Suppose that $f(x) = 3x^5 - 5x^3 + 2$. Sketch the graph of f and indicate where the graph is rising or falling, where the graph is concave up or concave down, and what the critical point(s) and inflection point(s) are.

Answer. A sketch of the graph of f is as follows.



- The graph of f is rising on $(-\infty, -1]$ and $[1, \infty)$ and falling on [-1, 1].
- The graph of f is concave up on $\left(-\frac{1}{\sqrt{2}}, 0\right)$ and $\left(\frac{1}{\sqrt{2}}, \infty\right)$ and concave down on $\left(-\infty, -\frac{1}{\sqrt{2}}\right)$ and $\left(0, \frac{1}{\sqrt{2}}\right)$.
- The critical points are (-1, 4), (0, 2) and (1, 0).
- The inflection points are

$$\left(-\frac{1}{\sqrt{2}}, 2+\frac{7\sqrt{2}}{8}\right), \quad (0,2) \text{ and } \left(\frac{1}{\sqrt{2}}, 2-\frac{7\sqrt{2}}{8}\right).$$

- Second derivative test. Suppose that f'(c) = 0 and f' exists on some open interval containing c. Then (i) and (ii) hold true.
 - (i) If f''(c) > 0, then f(x) has a relative minimum at x = c.
 - (ii) If f''(c) < 0, then f(x) has a relative maximum at x = c.

Proof of (i). f''(c) > 0 implies that there exists some $\delta > 0$ such that

$$f'(x) - f'(c) > 0$$
 if $c < x < c + \delta$

and

$$f'(x) - f'(c) < 0$$
 if $c - \delta < x < c$.

Since f is continuous at c, f has a relative minimum at c.

- Example 2. Suppose that $f(x) = x \sin(x)$. Show that f(x) has a relative minimum at x = 0.
- Proof of Fact 1. Let

$$h(x) = f(x) - f(a) - \left(\frac{f(b) - f(a)}{b - a}\right)(x - a),$$

then

$$h'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$$

Note that h'(c) = 0 for some $c \in (a, b)$ by MVT and that h' is strictly increasing on I since h'' = f'' > 0 on I. Therefore, h'(x) > h'(c) = 0 for $x \in (c, b)$ and h'(x) < h'(c) = 0 for $x \in (a, c)$. Since h is continuous at c, a and b, h is strictly increasing on [c, b] and strictly decreasing on [a, c]. Therefore,

$$h(x) < h(b) = 0$$
 for $c \le x < b$ and $h(x) < h(a) = 0$ for $a < x \le c$.

Since h(x) < 0 for $x \in (a, b)$, (1) holds.