
Mean value theorem and its applications

• Rolle’s theorem. Suppose that f is continuous on [a, b] and differen-
tiable on (a, b). If f(a) = f(b), then there exists c ∈ (a, b) such that
f ′(c) = 0.

Proof. The extreme value theorem says that there exist c1 and c2 in
[a, b] such that f(c1) and f(c2) are the minimum and maximum of f
on [a, b] respectively. Then at least one of the following three cases
holds:

– Case 1. If c1 is in (a, b), then f ′(c1) = 0 and we can take c to be
c1.

– Case 2. If c2 is in (a, b), then f ′(c2) = 0 and we can take c to be
c2.

– Case 3. If both c1 and c2 are in {a, b}, then f(c1) = f(c2), which
implies that f is a constant on [a, b] and c can be any number in
(a, b).

In each of the above cases, we have f ′(c) = 0 for some c ∈ (a, b), so
Rolle’s theorem holds.

• Mean Value Theorem (MVT;均值定理). Suppose that f is continuous
on [a, b] and differentiable on (a, b), then there exists c ∈ (a, b) such
that f ′(c) = (f(b)− f(a))/(b− a).

Proof. Take h(x) = f(x) − (f(b) − f(a))/(b − a) and apply Rolle’s
theorem.

• Example 1. Find lim
x→0+

cos(x)− 1

x
using MVT (mean value theorem).

Sol. By MVT, for x > 0, there exists c ∈ (0, x) such that

cos(x)− 1

x
=

cos(x)− cos(0)

x− 0
= − sin(c).

Therefore, for 0 < x < π/2, we have

0 ≤
∣∣∣∣cos(x)− 1

x

∣∣∣∣ = sin(c) ≤ x.

Since limx→0+ x = 0 = limx→0+ 0, by the squeeze rule, we have
limx→0+ |(cos(x)−1)/x| = 0, which implies that lim

x→0+
(cos(x)−1)/x =

0.
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• Example 2. Suppose that a car driver drived on a highway for two
hours and the driving distance is 400 km. Is it possible that the driver
kept the speed under 120 km/hour during the two hours? It is assumed
that the driving distance in the first t hours is a differentiable function
of t.

Solution. No, it is not possible. Let f(t) be the driving distance in
the first t hours. Then there exists a time point c ∈ (0, 2) such that

f ′(c) =
f(2)− f(0)

2− 0
= 400/2 = 200 > 120.

Therefore, it is not possible that the driving speed was always under
120 km/hour.

• Example 3. Show that tan(θ) ≤ 2θ for 0 ≤ θ ≤ π/4 by applying
MVT.

Sol. Note that

d

dx
tan(x) =

d

dx

sin(x)

cos(x)

=

(
d

dx
sin(x)

)
cos(x)− sin(x)

d

dx
cos(x)

cos2(x)

=
1

cos2(x)
= sec2(x),

and 1 ≤ sec2(x) ≤ 2 for 0 ≤ x ≤ π/4. Apply MVT with f(x) = tan(x)
and [a, b] = [0, θ], then there exists c ∈ [0, θ] such that

tan(θ)− tan(0)

θ − 0
= sec2(c) ≤ 2,

so tan(θ) ≤ 2θ.

• Zero-derivative theorem. Suppose that f is continuous on [a, b] and
f ′ = 0 on (a, b). Then f is a constant on [a, b].

Proof. MVT.

• Constant difference theorem. Suppose that f and g are continuous on
[a, b] and f ′ = g′ on (a, b). Then f − g is a constant on [a, b].

Proof. Zero-derivative theorem.
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Example 4. Suppose that f ′′ = 0 on (−∞,∞). Show that f(x) =
a+ bx, where a and b are constants.

• Definitions.

– f is strictly increasing (嚴格遞增) on an interval (a, b) means that
for x1 and x2 in (a, b), x1 < x2 ⇒ f(x1) < f(x2).

– f is increasing (遞增) on an interval (a, b) means that for x1 and
x2 in (a, b), x1 < x2 ⇒ f(x1) ≤ f(x2).

– f is strictly decreasing (嚴格遞減) on (a, b) means that for x1

and x2 in (a, b), x1 < x2 ⇒ f(x1) > f(x2).

– f is decreasing (遞減) on (a, b) means that for x1 and x2 in (a, b),
x1 < x2 ⇒ f(x1) ≥ f(x2).

• Monotone function theorem. If f ′ > 0 on (a, b), then f is strictly
increasing on (a, b). If f ′ < 0 on (a, b), then f is strictly decreasing on
(a, b).

Proof. MVT.

Example 5. Suppose that f(x) = 2x3− 9x2 + 12x+ 6. Find the open
interval(s) on which f is strictly increasing or strictly decreasing.

Answer: f is strictly increasing on (2,∞) and (−∞, 1). f is strictly
decreasing on (1, 2).

• Fact 1. Suppose that f is differentiable on (a, b). Then (i)-(vi) are
true.

(i) If f ′ > 0 on (a, b) and f is right-continuous at a, then f is strictly
increasing on [a, b).

(ii) If f ′ > 0 on (a, b) and f is left-continuous at b, then f is strictly
increasing on (a, b].

(iii) If f ′ > 0 on (a, b) and f is continuous on [a, b], then f is strictly
increasing on [a, b].

(iv) If f ′ < 0 on (a, b) and f is right-continuous at a, then f is strictly
decreasing on [a, b).

(v) If f ′ < 0 on (a, b) and f is left-continuous at b, then f is strictly
decreasing on (a, b].

3



(vi) If f ′ < 0 on (a, b) and f is continuous on [a, b], then f is strictly
decreasing on [a, b].

Proof. MVT. The proof for (ii) is given at the end of this handout.

Example 6. Let f(x) = ex − 1− x. Find the minimum of f .
Answer: 0.

Example 7. Let f(x) = x3 − 1, then f is strictly increasing on
(−∞,∞).

• Example 8. Suppose that f(x) = 3x5 − 5x3 + 2. Find the interval(s)
on which f is strictly increasing or strictly decreasing, and determine
where f has a relative maximum or a relative minimum.

Sol. f ′(x) = 15x4 − 15x2 = 15x2(x− 1)(x+ 1), so

f ′(x)


> 0 if x > 1;
< 0 if − 1 < x < 0 or 0 < x < 1;
> 0 if x < −1,

which gives the following results.

(i) By the monotone function theorem, f is strictly increasing on
(−∞,−1) and (1,∞), and is strictly decreasing on (−1, 0) and
(0, 1).

(ii) Since f is continuous at -1, 0 and 1, the results in (i) can be
extended as follows: f is strictly increasing on (−∞,−1] and
[1,∞), and is strictly decreasing on [−1, 0] and [0, 1].

(iii) The two intervals [−1, 0] and [0, 1] in (ii) can be combined since
[−1, 0] ∩ [0, 1] 6= ∅. That is, f is strictly decreasing on [−1, 1].

In summary, f is strictly increasing on (−∞,−1] and [1,∞), and is
strictly decreasing on [−1, 1]. Therefore, f(x) has a relative maximum
at x = −1 and a relative minimum at x = 1.
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• Proof of Fact 1 (ii).

The proof makes use of Fact 2 and Fact 3, which are stated below.

Fact 2. If f is strictly increasing on (a, b) and f(b) ≥ f(x) for x ∈ (a, b),
then f is strictly increasing on (a, b].

Fact 3. Suppose that limx→∆ f(x) exists and f(x) > L for x ∈ N(∆, D)
for some D. Then limx→∆ f(x) ≥ L.

We will first show that the result in Fact 1 (ii) holds using Fact 2 and Fact
3, and then prove Fact 2 and Fact 3. Suppose that f ′ > 0 on (a, b) and f
is left-continuous on b. Then f is strictly increasing on (a, b) (by monotone
function theorem). In addition, for x0 ∈ (a, b), f(x) > f(x0) on (x0, b), so
by Fact 3, limx→b− f(x) ≥ f(x0) and we have f(b) = limx→b− f(x) ≥ f(x0)
for x0 ∈ (a, b). Apply Fact 2, then we have f is strictly increasing on (a, b]
and the result in Fact 1 (ii) holds.

It remains to prove Fact 2 and Fact 3.

• Proof of Fact 2. Since

f is strictly increasing on (a, b), (1)

to show that f is strictly increasing on (a, b], it is sufficient to show
that

f(b) > f(x) for x ∈ (a, b). (2)

Since it is assumed that

f(b) ≥ f(x) for x ∈ (a, b), (3)

we only need to show that (3) impies (2) when (1) holds. We will
show that (3) impies (2) by contradiction. Suppose (1) and (3) hold
and there exists c ∈ (a, b) such that f(b) = f(c). Then by (1), f(x) >
f(c) = f(b) for x ∈ (c, b), which contradicts with (3). Therefore, (3)
impies (2) when (1) holds and the proof of Fact 2 is complete.

• Proof of Fact 3. We will show that limx→∆ f(x) ≥ L by contradiction.
Let L0 = limx→∆ f(x). Suppose that L0 < L, then there exists D0

such that

x ∈ N(∆, D0)⇒ |f(x)− L0| <
L− L0

2
⇒ f(x) < L0 +

L− L0

2
< L,

so
x ∈ N(∆, D0) ∩N(∆, D)⇒ f(x) < L,

which contradicts with the assumption that f(x) > L for x ∈ N(∆, D).
Therefore, we must have L0 ≥ L and the proof of Fact 3 is complete.
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