Limits involving infinity

• Definition 1. Suppose that $L \in R$. $\lim_{x\to\infty} f(x) = L$ means that

for every
$$\varepsilon > 0$$
, there exists D
給定誤差限制 ε 可找到控制參數D

such that (for x in the domain of f)

$$\underline{x \ge D}$$
 \Rightarrow $\underline{|f(x) - L| < \varepsilon}$
當 x 控制在 (D, ∞) 範圍 誤差 $f(x) - L$ 就可以控制在 $\pm \varepsilon$ 範圍

• Definition 2. Suppose that $L \in R$. $\lim_{x \to -\infty} f(x) = L$ means that

for every
$$\varepsilon > 0$$
, there exists D
可找到控制參數D

such that (for x in the domain of f)

$$\underbrace{x < D}_{ \text{當 x 控制在 } (-\infty, D)} \Rightarrow |f(x) - L| < \varepsilon.$$

• Example 1. Show that $\lim_{x\to\infty} \frac{1}{x} = 0$. Sol. For $\varepsilon > 0$, take $D = 1/\varepsilon$, then

$$x > D \Rightarrow \left|\frac{1}{x} - 0\right| = \frac{1}{x} < \frac{1}{D} = \varepsilon.$$

Therefore, $\lim_{x\to\infty} \frac{1}{x} = 0.$

• Example 2. Below is the proof for $\lim_{x\to\Delta} 2^x = L$. Determine what Δ and L are.

For $\varepsilon > 0$, take $D = \log_2 \varepsilon$, then

$$x < D \Rightarrow |2^x - 0| = 2^x < 2^D = \varepsilon.$$

Ans. $\Delta = -\infty$ and L = 0.

• Remark. Suppose that $L \in R$ and Δ can be a, a^+, a^-, ∞ or $-\infty$. $\lim_{x\to\Delta} f(x) = L$ means that

for every
$$\varepsilon > 0$$
, there exists D
可找到控制參數D

such that (for x in the domain of f)

$$x \in N(\Delta, D) \Rightarrow |f(x) - L| < \varepsilon,$$

where

$$N(\Delta, D) = \begin{cases} (a - D, a + D) - \{a\} & \text{if } \Delta = a; \\ (a - D, a) & \text{if } \Delta = a^{-}; \\ (a, a + D) & \text{if } \Delta = a^{+}; \\ (D, \infty) & \text{if } \Delta = \infty; \\ (-\infty, D) & \text{if } \Delta = -\infty. \end{cases}$$
(1)

• $\lim_{x\to\Delta} f(x) = \infty$.

Definition 3. Suppose that Δ can be a, a^+, a^-, ∞ or $-\infty$. $\lim_{x\to\Delta} f(x) = \infty$ means that

for every
$$M$$
, there exists D
給定門檻限制 M

such that (for x in the domain of f)

$$x \in N(\Delta, D) \Rightarrow \underbrace{f(x) > M}_{f(x)$$
就可以超過門檻 M

注意: Definition 3 中, 可假設 M >某一個給定的值.

• $\lim_{x\to\Delta} f(x) = -\infty.$

Definition 4. Suppose that Δ can be a, a^+, a^-, ∞ or $-\infty$. $\lim_{x \to \Delta} f(x) = -\infty$ means that

for every
$$M$$
, there exists D
给定門檻限制 M

such that (for x in the domain of f)

$$x \in N(\Delta, D) \Rightarrow \underbrace{f(x) < M}_{f(x)$$
就可以低於門檻M

注意: Definition 4 中, 可假設 M <某一個給定的值.

• Example 3. Show that $\lim_{x \to 1} \frac{1}{|x-1|} = \infty$. Sol. For M > 0, take $\delta = 1/M$, then

$$0<|x-1|<\delta \Rightarrow \frac{1}{|x-1|}>M.$$

Therefore, $\lim_{x \to 1} \frac{1}{|x-1|} = \infty$.

• Example 4. Show that $\lim_{x\to\infty} 2x = \infty$. Sol. For a real number M, take D = M/2, then

$$x > D \Rightarrow 2x > M.$$

Therefore, $\lim_{x\to\infty} 2x = \infty$.

- When $\lim_{x\to\Delta} f(x) = \infty$ (or $-\infty$), we say that $\lim_{x\to\Delta} f(x)$ diverges to ∞ (or $-\infty$) (極限發散到 ∞ 或 $-\infty$).
- 注意: 極限發散到 ∞ 或 $-\infty$, 算是極限不存在的情況. 但求 $\lim_{x\to\Delta} f(x)$ 時, 若能確定是發散到 ∞ 或 $-\infty$, 答案都會寫 $\lim_{x\to\Delta} f(x) = \infty$ (或 $-\infty$), 而不會只說極限不存在. 例如問題是 "Find $\lim_{x\to\infty} 2x$ ", 答案就會寫 $\lim_{x\to\infty} 2x = \infty$.
- Example 5. Below is the proof for $\lim_{x\to\Delta}\frac{1}{x} = L$. Determine what Δ and L are.

For M > 0, take $\delta = 1/M$, then

$$0 < x < \delta \Rightarrow \frac{1}{x} > \frac{1}{\delta} = M.$$

Ans. $\Delta = 0^+$ and $L = \infty$.

Example 6. Below is the proof for lim_{x→Δ} 1/x = L. Determine what Δ and L are.
 For M < 0, take δ = -1/M, then

$$-\delta < x < 0 \Rightarrow 0 < -x < \delta \Rightarrow \frac{1}{-x} > \frac{1}{\delta} \Rightarrow \frac{1}{x} = -\frac{1}{-x} < -\frac{1}{\delta} = M.$$

Ans. $\Delta = 0^-$ and $L = -\infty$.

- Limit of x rule and constant rule
 - $-\lim_{x\to\infty} x = \infty$ and $\lim_{x\to-\infty} x = -\infty$.
 - $-\lim_{x\to\Delta} C = C$ for any constant C.
- 牽涉±∞ 的極限四則運算規則. 定義

$$\pm \infty \pm \widehat{g} \, \underline{\mathfrak{B}} = \pm \infty;$$

$$\pm \infty \cdot \mathfrak{L} \, \widehat{g} \, \underline{\mathfrak{B}} = \pm \infty;$$

$$\pm \infty \cdot \widehat{g} \, \widehat{g} \, \underline{\mathfrak{B}} = \mp \infty;$$

$$\frac{\widehat{g} \, \underline{\mathfrak{B}}}{\pm \infty} = 0;$$

$$\infty \cdot \infty = \infty = (-\infty) \cdot (-\infty);$$

$$\infty \cdot (-\infty) = -\infty,$$

則極限四則運算仍然可以成立.

- $\infty \infty, \pm \infty / \infty, 0 \cdot \pm \infty$ 無法定義.
- Example 7. Find $\lim_{x\to\infty} (x-1)$. Sol. $\lim_{x\to\infty} (x-1) = \lim_{x\to\infty} x - \lim_{x\to\infty} 1 = \infty - 1 = \infty$.
- Example 8. Find $\lim_{x \to -\infty} 1/x$. Sol. $\lim_{x \to -\infty} \frac{1}{x} = \frac{1}{-\infty} = 0$.
- Example 9. Find $\lim_{x \to -\infty} x^2$. Sol. $\lim_{x \to -\infty} x^2 = (\lim_{x \to -\infty} x) \cdot (\lim_{x \to -\infty} x) = \infty \cdot \infty = \infty$.
- Example 10. Find $\lim_{x \to \infty} \frac{x}{x+1}$. Sol. $\lim_{x \to \infty} \frac{x}{x+1} = \lim_{x \to \infty} 1 - \lim_{x \to \infty} \frac{1}{x+1} = 1 - \frac{1}{\infty} = 1 - 0 = 1$.
- Fact 1 Suppose that Δ can be a, a⁺, a⁻, ∞ or -∞ and L can be a real number, ∞, or -∞. Suppose that there exists D such that

$$f(x) = g(x)$$
 for every x in $N(\Delta, D)$,

where $N(\Delta, D)$ is defined in (1), and $\lim_{x\to\Delta} g(x) = L$. Then

$$\lim_{x \to \Delta} f(x) = \lim_{x \to \Delta} g(x) = L.$$

Example 11. Suppose that f(x) = x for x > 0 and f(x) = 0 for $x \le 0$. Find $\lim_{x\to\infty} f(x)$ and $\lim_{x\to\infty} f(x)$.

Sol. $\lim_{x\to-\infty} f(x) = \lim_{x\to-\infty} 0 = 0$ and $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} x = \infty$.

- Change of variable. Suppose that Δ can be a, a^+, a^-, ∞ , or $-\infty$ and L can be a real number, ∞ , or $-\infty$. Suppose that $\lim_{x\to\Delta} g(x) = L$.
 - Suppose that $g(x) \neq L$ for $x \in N(\Delta, D)$ for some D, then

$$\lim_{x \to \Delta} f(g(x)) = \lim_{y \to L} f(y)$$

if $\lim_{y\to L} f(y)$ is defined.

- Suppose that $L \in R$ and g(x) > L for x in $N(\Delta, D)$ for some D, then

$$\lim_{x\to\Delta}f(g(x))=\lim_{y\to L^+}f(y)$$

if $\lim_{y\to L^+} f(y)$ is defined.

- Suppose that $L \in R$ and g(x) < L for x in $N(\Delta, D)$ for some D, then

$$\lim_{x \to \Delta} f(g(x)) = \lim_{y \to L^-} f(y)$$

if $\lim_{y\to L^-} f(y)$ is defined.

• Example 12. Find $\lim_{x\to 0^-} (1/x)$.

Sol. Let y = -x, then $\lim_{x\to 0^-} y = 0$ and y > 0 for $x \in N(0^-, D) = (-D, 0)$ for D > 0. Therefore, $\lim_{x\to 0^-} (1/x) = \lim_{y\to 0^+} 1/(-y) = -\infty$.

- Example 13. Suppose that $\lim_{x\to\infty} f(-x) = L$. Find $\lim_{x\to-\infty} f(x)$. Sol. Let y = -x, then $\lim_{x\to\infty} y = -\infty$ and $y \neq -\infty$ for $x \in N(\infty, D) = (D, \infty)$ for D. Therefore, $\lim_{x\to-\infty} f(x) = \lim_{y\to\infty} f(-y) = L$.
- Example 14. Suppose that $\lim_{x\to\infty} f(x) = -\infty$. Find $\lim_{x\to 0^+} f(1/x)$. Sol. Let y = 1/x, then $\lim_{x\to 0^+} y = \infty$ and $y \neq \infty$ for $x \in N(0^+, D) = (0, D)$ for D > 0. Therefore, $\lim_{x\to 0^+} f(1/x) = \lim_{y\to\infty} f(y) = -\infty$.

• One-sided limit theorem: suppose that a is a real number and L can be a real number, ∞ , or $-\infty$. Then

$$\lim_{x \to a} f(x) = L \Leftrightarrow \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = L.$$

• Example 15. Find $\lim_{x\to 0} \frac{1}{|x|}$ using the fact that $\lim_{x\to 0^+} \frac{1}{x} = \infty$.

Sol. Since

$$\lim_{x \to 0^+} \frac{1}{|x|} = \lim_{x \to 0^+} \frac{1}{x} = \infty$$

and

$$\lim_{x \to 0^{-}} \frac{1}{|x|} = \lim_{x \to 0^{-}} -\frac{1}{x} = \lim_{y \to 0^{+}} \frac{1}{y} = \infty,$$

by one-sided limit theorem, $\lim_{x \to 0} \frac{1}{|x|} = \infty$.

• Example 16. Find $\lim_{x \to 0} \frac{1}{x}$.

Sol. From one-sided limit theorem, $\lim_{x\to 0} \frac{1}{x}$ cannot be a real number since $\lim_{x\to 0^+} \frac{1}{x} = \infty$. Also, $\lim_{x\to 0} \frac{1}{x}$ cannot be ∞ since $\lim_{x\to 0^-} \frac{1}{x} = -\infty$. The limit $\lim_{x\to 0} \frac{1}{x}$ does not exist and is not ∞ or $-\infty$.

• Squeeze rule (夾擠定理). Suppose that Δ can be a, a^+, a^-, ∞ , or $-\infty$. Suppose that $g(x) \leq f(x) \leq h(x)$ for every $x \in N(\Delta, D)$ for some D, then

$$\lim_{x \to \Delta} g(x) = \lim_{x \to \Delta} h(x) \Rightarrow \lim_{x \to \Delta} f(x) = \lim_{x \to \Delta} g(x) = \lim_{x \to \Delta} h(x).$$

In addition, we have the following.

- Suppose that $g(x) \leq f(x)$ for every $x \in N(\Delta, D)$ for some D and $\lim_{x\to\Delta} g(x) = \infty$, then $\lim_{x\to\Delta} f(x) = \infty$.
- Suppose that $f(x) \leq g(x)$ for every $x \in N(\Delta, D)$ for some D and $\lim_{x\to\Delta} g(x) = -\infty$, then $\lim_{x\to\Delta} f(x) = -\infty$
- Example 17. Find $\lim_{x\to\infty} x^{2.5}$. Sol. Note that $x^{2.5} \ge x^2$ for $x \in N(\infty, 1) = (1, \infty)$ and $\lim_{x\to\infty} x^2$. Therefore, $\lim_{x\to\infty} x^{2.5} = \infty$.

- Suppose that $\{a_n\}_{n=1}^{\infty}$ is a sequence of real numbers. The definition of $\lim_{n\to\infty} a_n = L$ is the same as $\lim_{x\to\infty} f(x) = L$ by replacing x by n and f(x) by a_n :
 - Definition for $\lim_{n\to\infty} a_n = L, L \in \mathbb{R}$.

for every
$$\varepsilon > 0$$
, there exists *D*
給定誤差限制 ε 可找到控制參數*D*

such that

$$n > D \Rightarrow |a_n - L| < \varepsilon$$

- Definition for $\lim_{n\to\infty} a_n = \infty$.

for every M, there exists D

such that

$$n > D \Rightarrow a_n > M.$$

- Definition for $\lim_{n\to\infty} a_n = -\infty$.

for every M, there exists D

such that

$$n > D \Rightarrow a_n < M.$$

• Suppose that $\lim_{x\to\infty} f(x) = L$, then $\lim_{n\to\infty} f(n) = L$.

Example 18. $\lim_{n\to\infty} \frac{1}{n} = 0.$