
Continuity

• Definition 1. f is continuous at a (f 在a點連續) means that

lim
x→a

f(x) = f(a).

Definition 2. f is right-continuous at a (f 在a點右連續) means that

lim
x→a+

f(x) = f(a).

Definition 3. f is left-continuous at a (f 在a點左連續) means that

lim
x→a−

f(x) = f(a).

• Suppose that I is an open interval. f is continuous on I means that
f is continuous at every point in I.

– Polynomials are continuous on R = (−∞,∞).

– The absolute value function is continuous on R.

– sin and cos are continuous on R.

• Example 1. Suppose that B > 1. Let f(x) = Bx for x ∈ R. Show
that f is continuous on R.

Sol. We need to show that

lim
x→a

Bx = Ba for any a ∈ R. (1)

For Ba > ε > 0, take

δ = min (logB(Ba + ε)− a, a− logB(Ba − ε)) ,

then

x ∈ (a−δ, a+δ)−{a} ⇒ x ∈ (logB(Ba − ε), logB(Ba + ε))⇒ |Bx−Ba| < ε.

Therefore, (1) holds and f is continuous on R.

• Remark. From Example 1, for 0 < B < 1 and a ∈ R, limx→a(1/B)x =
(1/B)a, which implies

lim
x→a

Bx = lim
x→a

1

(1/B)x
=

limx→a 1

limx→a(1/B)x
=

1

(1/B)a
= Ba.

Therefore, (1) holds for 0 < B < 1. In addition, it is clear that
(1) holds for B = 1, so (1) holds for B > 0. This implies that any
exponential function is continuous on R.
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• The fact that logarithmic functions are continuous on (0,∞) can be
established using the approach in Example 1.

• Example 2. Suppose that n is a positive integer. Let f(x) = x1/n for
x ≥ 0. Show that f is continuous on (0,∞).

Sol. Recall that in Example 9 in the handout “Definitions and prop-
erties for limits”, we have

lim
x→a

g(x) = 1⇒ lim
x→a

(g(x))1/n = 1. (2)

From (2), we can show that

lim
x→a

h(x) = L > 0⇒ lim
x→a

(h(x))1/n = L1/n (3)

by taking g(x) = h(x)/L and apply (2). Apply (3) with h(x) = x,
then we have

lim
x→a

x1/n = a1/n for a > 0 (4)

since limx→a x = a > 0. (4) means that f is continuous on (0,∞).

• Example 3. Suppose that n is a positive integer. Let f(x) = x1/n for
x ≥ 0. Show that f is right-continuous at 0.

Sol. For ε > 0, take δ = εn. Then

x ∈ N(0+, δ) = (0, δ)⇒ 0 < x < εn ⇒ |f(x)− 0| = x1/n < ε.

Therefore, limx→0+ f(x) = 0 = f(0) and f is right-continuous at 0.

• Continuity on an interval that is not open.

– f is continuous on [a, b] means that f is continuous on (a, b) and
f is right-continuous at a and left-continuous at b. Here both a
and b are real numbers.

– f is continous on [a, L) means that f is continuous on (a, L) and
f is right-continous at a. Here a is a real number and L can be
a real number or ∞.

– f is continous on (L, b] means that f is continuous on (L, b] and
f is left-continous at b. Here b is a real number and L can be a
real number or −∞.

• The f in Examples 2 and 3 is continuous on [0,∞).
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• Removable discontinuity (可修正的不連續). Suppose that limx→a+ f(x) =
L = limx→a− f(x) for some real number L. If f(a) 6= L or f(a) is not
defined, then f is not continuous at a, yet the discontinuity at a is
removable in the sense that one can define

g(x) =

{
f(x) if x 6= a;
L if x = a,

then g can be viewed as a modified version of f and g is continuous at
a.

• Example 4. The function
sin(x)

x
has a removable discontinuity at 0.

• Composition limit rule: suppose that a is a real number and ∆ can
be a, a+, a−, ∞ or −∞. Suppose that limx→∆ g(x) exists and f is
continuous at limx→∆ g(x), then limx→∆ f(g(x)) = f(limx→∆ g(x)).

• Proof of Composition limit rule. Let L = limx→∆ g(x), then L ∈ R.
Since limy→L f(y) = f(L), for ε > 0, there exists δ > 0 such that

y ∈ N(L, δ) = (L− δ, L+ δ)− {L} ⇒ |f(y)− f(L)| < ε,

which implies
|y − L| < δ ⇒ |f(y)− f(L)| < ε. (5)

Since L = limx→∆ g(x), for the δ in (5), there exists D such that

x ∈ N(∆, D)⇒ |g(x)− L| < δ
(5)⇒ |f(g(x))− f(L)| < ε.

Therefore, limx→∆ f(g(x)) = f(L) = f(limx→∆ g(x)).

• Example 5. Find limx→1 sin(x3 + 3x+ 1).

Sol. Since sin is continuous onR, limx→1 sin(x3+3x+1) = sin(limx→1(x3+
3x+ 1)) = sin(5).

• Example 6. Suppose that f(x) = sin(x)/x for x 6= 0 and f is
continuous at 0. Suppose that g(x) = x for x > 0 and g(x) = 0 for
x ≤ 0. Find limx→0 f(g(x)).

Sol. Since f is continuous on R, limx→0 f(g(x)) = f(limx→0 g(x)) =
f(0) = limx→0 sin(x)/x = 1.

• Properties of continuous functions.
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(i) Suppose that f and g are continuous at a and c is a constant.
Then cf , f + g, f − g and f · g are continuous at a. f/g is
continuous at a if g(a) 6= 0.

(ii) Suppose that g is continuous at a and f is continuous at g(a),
then f ◦ g is continuous at a.

Note. The properties in (i) still hold true if the continuity at a is
replaced by the left or right continuity at a.

• Intermediate value theorem (中間值定理. Theorem 2.6 in the text).
Suppose that f is continuous on the interval [a, b] and L is a number
between f(a) and f(b) such that L 6= f(a) and L 6= f(b). Then there
exists some c in (a, b) such that f(c) = L.

– Special case: root location theorem (勘根定理). Suppose that f
is continuous on the interval [a, b] and f(a)f(b) < 0. Then there
exists some c in (a, b) such that f(c) = 0.

• Example 7. Suppose that f(x) = x(x− 1)(x− 2) + 0.125. Show that
f has a root in (0, 1.5), a root in (1.5, 2) and a negative root.

Sol. Note that f is continuous on R, so by root location theorem,
f(a)f(b) > 0 implies that f has a root between a and b. Since f(0) > 0,
f(1.5) < 0 and f(2) > 0, f has at least one root in (0, 1.5) and at least
one root in (1.5, 2). Also, limx→−∞ f(x) = −∞, so there exists D such
that

x ∈ N(−∞, D) = (−∞, D)⇒ f(x) < 0.

Since f(0) > 0, we have D ≤ 0 and f(D − 1) < 0, so f has at least
one root in (D − 1, 0), which is a negative root.

• Example 8. Let

f(x) =

{
x if x 6= 0 and 1/x is an integer;
0 otherwise.

Then f is continuous at 0 but the graph of f has many holes near 0.
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