Functions and graphs

• 函數, 定義域, 值域. A function (函數) f takes an input x and maps it to a unique output, denoted by f(x). The set

$$\{x: f(x) \text{ is defined }\}$$

is called the domain (定義域) of f. The set $\{f(x) : x \text{ is in the domain of } f\}$ is called the range (值域) of f.

Example 1. 圖書館查詢. Input: 關鍵字; output: 搜尋結果

Example 2. 數學函數. Input: x; output: $1 + \sqrt{x}$. Domain: $[0, \infty)$. Range: $[1, \infty)$.

- Intervals (區間)
 - R: the set of all real numbers, which is often denoted by $(-\infty, \infty)$.
 - [a, b]: the set $\{x : a \le x \le b\}$, which is also called the closed interval (閉區間) with endpoints (端點) at a and b.
 - -(a,b): the set $\{x : a < x < b\}$. It is an open interval (開區間).
 - $(a, b]: \text{ the set } \{x : a < x \le b\}$
 - [a, b): the set $\{x : a \le x < b\}$
- In this course, we consider functions whose domains and ranges are subsets of *R*.
- 函數的相等. Two functions f and g are the same if and only if
 - (a) f and g have the same domain (denoted by D) and
 - (b) f(x) = g(x) for every x in D.

Example 3. Suppose that f and g are two functions defined by $f(x) = \sqrt{x}$ for $x \ge 0$ and $g(x) = \sqrt{|x|}$ for $x \in R$. Then f and g are not the same.

• 函數的合成. The composition $f \circ g$ takes an input x and returns the output f(g(x)). That is, $f \circ g(x) = f(g(x))$. The domain of $f \circ g$ is

 $\{x : x \text{ is in the domain of } g \text{ and } g(x) \text{ is in the domain of } f \}.$

Example 4. Suppose that $f(x) = \sqrt{x}$ for $x \ge 0$ and g(x) = x - 1 for $x \in R$. Find the domain of $f \circ g$.

Ans. $[1,\infty)$.

Example 5. Find two functions f and g such that $f(g(x)) = (x^2 + 2x + 3)^2$ for $x \in R$.

Example 6. Suppose that f and g are two functions, the domain of f is $\{2, 4, 6\}$, and the domain of g is $\{1, 2, 3, 4, 5\}$. The function values of f and g are given below:

x	f(x)	x	g(x)
2	3	1	4
4	1	2	2
6	5	3	1
		4	3
		5	2

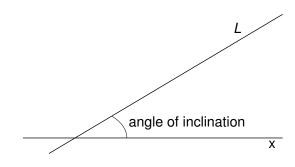
What are the domains of $g \circ f$ and $f \circ g$? What are the ranges of $g \circ f$ and $f \circ g$?

- Inverse function (反函數).
 - For a function f, and y in the range of f, the inverse function of f maps y to the unique x in the domain of f such that f(x) = y.
 - The inverse of f is denoted by f^{-1} .
 - If for some y in the range of f, solving f(x) = y gives more than one x values, then f^{-1} does not exist (若 f 不是一對一函數, 則 f^{-1} 不存在).

Example 7. For each f given below, determine whether f^{-1} exists. If f^{-1} exists, find it.

- (a) $f(x) = x^3$.
- (b) $f(x) = \sin(x)$.

Example 8. In Example 6, determine whether f^{-1} exists. If f^{-1} exists, find it.


- Common functions: trigonometric functions (三角函數), polynomials (多 項式), rational functions (分式型函數), exponential functions(指數函數).
 More functions can be obtained by taking composition, inverse, addition and multiplication of known functions.
- 反三角函數. 若將三角函數定義域適當縮小, 則反函數可定義. 例如考 慮 $f(x) = \sin(x)$ for $x \in [-\pi/2, \pi/2]$ 且 f 定義域 爲 $[-\pi/2, \pi/2]$, 則可定 義 f^{-1} . 此時 f^{-1} 記作sin⁻¹或是arcsin.

$$\begin{vmatrix} \underline{\beta} \leq \underline{\beta} \, \underline{\beta} \, \underline{\beta} \\ \text{domain} \\ \text{range} \end{vmatrix} \begin{vmatrix} \sin^{-1} & \cos^{-1} & \tan^{-1} & \cot^{-1} & \sec^{-1} & \csc^{-1} \\ [-1,1] & [-1,1] & (-\infty,\infty) & (-\infty,\infty) & (-\infty,-1] \cup [1,\infty) \\ \\ \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \\ \begin{bmatrix} 0,\pi \end{bmatrix} & \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \\ \begin{pmatrix} 0,\pi \end{bmatrix} & \left[0,\pi \end{bmatrix} - \left\{ \frac{\pi}{2} \right\} \\ \begin{bmatrix} -\frac{\pi}{2}, \frac{\pi}{2} \end{bmatrix} - \left\{ 0 \right\} \end{vmatrix}$$

函數圖形相關名詞

• Angle of inclination (傾斜角, 斜角) and slope (斜率).

slope = tan(angle of inclination)

• Intercepts (截點): 函數圖形和座標軸的交點.

Example 9. f(x) = -(x - 1)(x - 2). x-intercepts: (1,0) and (2,0). y-intercept: (0,-2).

- Even/odd functions (偶/奇函數).
 - f is an even function if f(-x) = f(x) for all $x \in R$ (偶函數圖形對稱 於y軸).
 - f is an odd function if f(-x) = -f(x) for all $x \in R$ (奇函數圖形對 稱於原點).